Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Rep ; 11(1): 17263, 2021 08 26.
Article in English | MEDLINE | ID: covidwho-1550348

ABSTRACT

Dexamethasone (Dex) is a highly insoluble front-line drug used in cancer therapy. Data from clinical trials indicates that the pharmacokinetics of Dex vary considerably between patients and prolonging drug exposure rather than increasing absolute dose may improve efficacy. Non-toxic, fully biodegradable Dex loaded nanovectors (NV) were formulated, via simple direct hydration within 10 min, as a vehicle to extend exposure and distribution in vivo. Dex-NV were just as effective as the free drug against primary human leukemia cells in vitro and in vivo. Importantly, high levels of DMSO solvent were not required in the NV formulations. Broad distribution of NV was seen rapidly following inoculation into mice. NV accumulated in major organs, including bone marrow and brain, known sanctuary sites for ALL. The study describes a non-toxic, more easily scalable system for improving Dex solubility for use in cancer and can be applied to other medical conditions associated with inflammation.


Subject(s)
Dexamethasone/administration & dosage , Drug Delivery Systems/methods , Nanostructures/chemistry , Polymers/chemistry , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Xenograft Model Antitumor Assays/methods , Animals , Antineoplastic Agents, Hormonal/administration & dosage , Antineoplastic Agents, Hormonal/chemistry , Antineoplastic Agents, Hormonal/pharmacokinetics , Child , Dexamethasone/chemistry , Dexamethasone/pharmacokinetics , Drug Liberation , Humans , Kaplan-Meier Estimate , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Treatment Outcome , Tumor Cells, Cultured , Young Adult
2.
Theranostics ; 11(14): 7005-7017, 2021.
Article in English | MEDLINE | ID: covidwho-1524524

ABSTRACT

The tumor suppressor protein p53 remains in a wild type but inactive form in ~50% of all human cancers. Thus, activating it becomes an attractive approach for targeted cancer therapies. In this regard, our lab has previously discovered a small molecule, Inauhzin (INZ), as a potent p53 activator with no genotoxicity. Method: To improve its efficacy and bioavailability, here we employed nanoparticle encapsulation, making INZ-C, an analog of INZ, to nanoparticle-encapsulated INZ-C (n-INZ-C). Results: This approach significantly improved p53 activation and inhibition of lung and colorectal cancer cell growth by n-INZ-C in vitro and in vivo while it displayed a minimal effect on normal human Wi38 and mouse MEF cells. The improved activity was further corroborated with the enhanced cellular uptake observed in cancer cells and minimal cellular uptake observed in normal cells. In vivo pharmacokinetic evaluation of these nanoparticles showed that the nanoparticle encapsulation prolongates the half-life of INZ-C from 2.5 h to 5 h in mice. Conclusions: These results demonstrate that we have established a nanoparticle system that could enhance the bioavailability and efficacy of INZ-C as a potential anti-cancer therapeutic.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Indoles/pharmacology , Lung Neoplasms/drug therapy , Nanoparticles/chemistry , Phenothiazines/pharmacology , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Biological Availability , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Humans , Indoles/chemistry , Indoles/pharmacokinetics , Indoles/therapeutic use , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Nanoparticles/toxicity , Nanoparticles/ultrastructure , Phenothiazines/chemistry , Phenothiazines/pharmacokinetics , Phenothiazines/therapeutic use , Spectroscopy, Fourier Transform Infrared , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
3.
Int J Biol Sci ; 17(12): 3224-3238, 2021.
Article in English | MEDLINE | ID: covidwho-1524470

ABSTRACT

Mechanisms of breast cancer progression and invasion, often involve alteration of hormonal signaling, and upregulation and/or activation of signal transduction pathways that input to cell cycle regulation. Herein, we describe a rationally designed first-in-class novel small molecule inhibitor for targeting oncogenic and hormonal signaling in ER-positive breast cancer. BC-N102 treatment exhibits dose-dependent cytotoxic effects against ER+ breast cancer cell lines. BC-N102 exhibited time course- and dose-dependent cell cycle arrest via downregulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR), phosphatidylinositol 3-kinase (PI3K), phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-Akt, CDK2, and CDK4 while increasing p38 mitogen-activated protein kinase (MAPK), and mineralocorticoid receptor (MR) signaling in breast cancer cell line. In addition, we found that BC-N102 suppressed breast cancer tumorigenesis in vivo and prolonged the survival of animals. Our results suggest that the proper application of BC-N102 may be a beneficial chemotherapeutic strategy for ER+ breast cancer patients.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cell Cycle Checkpoints/drug effects , Cell Cycle Proteins/metabolism , G1 Phase/drug effects , Receptors, Estrogen/metabolism , Resting Phase, Cell Cycle/drug effects , Animals , Biomarkers, Tumor/genetics , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Division , Cell Line, Tumor , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 4/genetics , Female , Flow Cytometry , Gene Expression Regulation, Neoplastic/physiology , Humans , Maximum Tolerated Dose , Mice , Mice, Nude , Xenograft Model Antitumor Assays
4.
Adv Sci (Weinh) ; 8(16): e2100965, 2021 08.
Article in English | MEDLINE | ID: covidwho-1281195

ABSTRACT

Rapid progress has been made to identify and study the causative agent leading to coronavirus disease 2019 (COVID-19) but many questions including who is most susceptible and what determines severity remain unanswered. Angiotensin-converting enzyme 2 (ACE2) is a key factor in the infection process of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In this study, molecularly specific positron emission tomography imaging agents for targeting ACE2 are first developed, and these novel agents are evaluated in vitro, in preclinical model systems, and in a first-in-human translational ACE2 imaging of healthy volunteers and a SARS-CoV-2 recovered patient (NCT04422457). ACE2 expression levels in different organs in live subjects are quantitatively delineated and observable differences are measured in the patient recovered from COVID-19. Surprising sites of uptake in the breast, reproductive system and very low uptake in pulmonary tissues are reported. This novel method can add a unique tool to facilitate SARS-CoV-2 related research and improve understanding of this enigmatic disease. Molecular imaging provides quantitative annotation of ACE2, the SARS-CoV-2 entry receptor, to noninvasively monitor organs impacted by the COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , Peptides/pharmacokinetics , SARS-CoV-2/metabolism , Animals , COVID-19/pathology , Cells, Cultured , Female , Gallium Radioisotopes/pharmacokinetics , Humans , Male , Mice , Positron Emission Tomography Computed Tomography , Protein Binding , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Tissue Distribution , Xenograft Model Antitumor Assays
5.
J Ovarian Res ; 13(1): 79, 2020 Jul 19.
Article in English | MEDLINE | ID: covidwho-657841

ABSTRACT

The outbreak and continued spread of the novel coronavirus disease 2019 (COVID-19) is a preeminent global health threat that has resulted in the infection of over 11.5 million people worldwide. In addition, the pandemic has claimed the lives of over 530,000 people worldwide. Age and the presence of underlying comorbid conditions have been found to be key determinants of patient mortality. One such comorbidity is the presence of an oncological malignancy, with cancer patients exhibiting an approximate two-fold increase in mortality rate. Due to a lack of data, no consensus has been reached about the best practices for the diagnosis and treatment of cancer patients. Interestingly, two independent research groups have discovered that Withaferin A (WFA), a steroidal lactone with anti-inflammatory and anti-tumorigenic properties, may bind to the viral spike (S-) protein of SARS-CoV-2. Further, preliminary data from our research group has demonstrated that WFA does not alter expression of ACE2 in the lungs of tumor-bearing female mice. Downregulation of ACE2 has recently been demonstrated to increase the severity of COVID-19. Therefore, WFA demonstrates real potential as a therapeutic agent to treat or prevent the spread of COVID-19 due to the reported interference in viral S-protein to host receptor binding and its lack of effect on ACE2 expression in the lungs.


Subject(s)
Angiotensin II/drug effects , Coronavirus Infections/drug therapy , Peptidyl-Dipeptidase A/drug effects , Pneumonia, Viral/drug therapy , Receptor, Angiotensin, Type 1/drug effects , Withanolides/pharmacology , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/metabolism , COVID-19 , Cachexia/metabolism , Female , Humans , Mice , Ovarian Neoplasms/drug therapy , Pandemics , Peptidyl-Dipeptidase A/metabolism , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Receptor, Angiotensin, Type 1/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Xenograft Model Antitumor Assays , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL